

Plume Rise Estimates for Electric Generating Stations

F. W. Thomas, S. B. Carpenter and W. C. Colbaugh

Phil. Trans. R. Soc. Lond. A 1969 265, 221-243

doi: 10.1098/rsta.1969.0051

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

Phil. Trans. Roy. Soc. Lond. A. 265, 221-243 (1969) [221] Printed in Great Britain

IV. RECENT RESULTS OF MEASUREMENTS

Plume rise estimates for electric generating stations

By F. W. Thomas, S. B. Carpenter and W. C. Colbaugh Air Quality Branch, Division of Health and Safety, Tennessee Valley Authority, Alabama, U.S.A.

The Tennessee Valley Authority, under sponsorship of the Public Health Service, National Air Pollution Control Administration, initiated a comprehensive study titled 'Full scale study of plume rise at large electric generating stations' in 1963. The variability of plant sizes, stack heights, and stack configurations accommodated full scale assessment of plume rise over a wide range of meteorological and operational

Introduction

There are three principal requirements for determining the potential ground level pollution from large industrial stack emissions such as those at electric generating stations. These factors are: (1) an estimate of the rate of emission from the stack (emission rate) which is normally available from operations information, (2) the degree of dilution of the pollutant with the surrounding atmosphere (rate of dispersion), and (3) the sum of actual stack height and vertical displacement of the plume (effective stack height) which is influenced by the diameter of the stack nozzle, the temperature of effluent gases with respect to surrounding air, the specific heat capacity at constant pressure, and the average vertical efflux velocity.

The excellent work of Sutton (1953) and Pasquill (1962) in England, along with investigations in the U.S., has led to the development and verification of mathematical formulas which are considered suitable to estimate diffusion rates for principal meteorological dispersion models. Diffusion is generally represented as a 2-phase problem—the first is the initial rise of the efflux by virtue of its kinetic and thermal energy and the second when it begins ist spread downwind from the effective source height it has attained.

As pointed out at the Round Table Discussion of dispersion, convened by Concawe at the Hague, November 1967, much ambiguity exists with respect to the numerous formulas postulated to approximate effective plume height for defined meteorological and operational conditions. The elevation of effective stack height, H_e , is the sum of the actual height of the stack, $h_{\rm s}$, and of the plume rise, Δh . The equations used in this paper for calculation of Δh may be summarized as $\Delta h = A/u^a,$

where A is some function of the kinetic and thermal energy of the plume and u is the wind speed.

BASIC WORKPLAN

The objective of this study was to collect, compile, and analyse data for documentation and definition of plume rise and related meteorological parameters at a range of generating plants. Six generating plants were chosen for the study with unit ratings from 173 to 704 MW and stack heights from 76.2 to 182.9 m.

The first two years of the study, completed in the spring of 1965, were devoted primarily to collection of field plume rise and meteorological data. Field work, totalling about 311 h of actual sampling, was scheduled in seasons when frequencies of desired meteorological régimes were

23-2

F. W. THOMAS, S. B. CARPENTER AND W. C. COLBAUGH

expected to be the highest, i.e. high winds and neutral stability in the spring (March to April) and low winds and stable or inversion conditions in the fall (September to October). A third régime, i.e. low winds and unstable conditions, was also documented whenever possible. Procedural aspects of the study were presented in an interim report (Leavitt, Carpenter & Thomas 1965).

DATA COMPILATIONS

A comprehensive data collection programme was devised. The three general categories of data included: (1) plant design and operational factors, (2) meteorological information, and (3) plume profile, elevation of plume top and bottom.

Plant design and operational factors

Principal plant design and operational factors for the six steam plants are shown in table 1.

For each field study period the amount, power rating, and approximate analysis of coal burned for each unit and the unit level of operation were obtained for determination of stack effluent velocity and heat emission rate. Gas temperatures at the stack outlet were also obtained from a sampling programme developed especially for the study.

TABLE 1. PLANT DESIGN AND OPERATIONAL DATA

	Paradise	Gallatin	Shawnee	Johnsonville	Colbert	Widows Creek
plant number	1	2	3	4	5	6
number of units	2	4	10	4	4	1
rated capacity, per unit/MW	704	314	175	172.8	206	575
stacks: number	2	2	10	2	4	1
height/m	182.9	152.4	76.2	121.9	91.4	152.4
diameter/m	7.9	7.6	4.3	4.3	5.0	6.3
spacing/m	61.9	77.4	25.2	49.4	30.2	-
temperature of flue gas leaving						
$\mathrm{stack}/\mathrm{K}$	413.2	409.9	413.2	424.9	443.8	414.3
orientation	N 38° E	N 39° E	N 56° W	N 5° W	S 45° E	

Meteorological information

Wind direction, wind speed, and temperature profile data were collected routinely. Wind profile data were obtained at approximately 30 min intervals by the double theodolite technique.

Vertical temperature profiles were obtained from a Bell Model 47-D-1 helicopter equipped with a Cole-Parmer model 8425 temperature indicator. Temperature profile runs were made at 45 min intervals in the immediate plume area about 1.6 km from the power plant. The 305 individual temperature profiles were taken at $30.5\,\mathrm{m}$ vertical intervals from surface to about $150\,\mathrm{m}$ above the plume top and involved a total helicopter time of 188h.

Additional meteorological information, i.e. surface wind direction, wind speed, and dry-bulb and wet-bulb temperatures, was recorded before each pibal release at the primary station. Also, cloud coverage and other pertinent meteorological or plume observational information was recorded.

General synoptic weather information from U.S. Weather Bureau radiosonde observations and surface and upper air charts was also compiled for analysis and evaluation.

223

Range of plant operational and meteorological conditions covered

The range of principal plant operational and meteorological conditions spanned by these observations is summarized as follows:

> stack gas velocity 7.7 to $29.2 \,\mathrm{m \, s^{-1}}$, volume emission rate $136 \text{ to } 663 \text{ m}^3 \text{ s}^{-1}$ 379 to 418 K (106 to 145 °C), stack gas temperature heat emission rate 22.1 to $103 \,\mathrm{MJ}\,\mathrm{s}^{-1}$ (5.28 to 24.6 Mcal s⁻¹), 1.0 to $16.8 \,\mathrm{m \, s^{-1}}$, wind speed, \bar{u}

ambient temperature 273 to 304 K (0 to 31 °C), -5.3 to $37.4 \, \mathrm{K} \, \mathrm{km}^{-1}$. potential temperature gradient

Plume profile

In the course of the study, 1580 photographs were taken for definition of the plume profile. In addition to excellent quality control, infrared film was found to provide superior plume delineation in most cases and was used in preference to standard black and white or Polaroid film. The photographs were taken at 5 min intervals.

Elevation of top and bottom of the plume was also recorded about every 45 min at 0.8 and 1.6 km, and at 3.2 km when possible, by visual observation and helicopter altimeter readings. The helicopter was also used during each study period to maintain continuous surveillance on the direction of plume travel. These observations were obtained by references to established ground control points.

DATA PROCESSING AND TABULATION

All data from photographs, pilot balloon observations, and temperature soundings were programmed for computer analysis and graphic display. Plume profile data from photographs were resolved by means of special template overlays constructed to coincide with the particular camera lens. Elevation of plume top and bottom observed from the helicopter agreed closely with corresponding points on the plume profile obtained from the photographs.

For each series of photographs the mean height of top and bottom of the plume was determined as a function of distance from the plant; and from these values a plot of the centreline position was derived, the centreline being defined as the arithmetic mean between the top and the bottom. From these plots, rise of the centreline as a function of distance was determined. Figure 1 illustrates a portion of the 1 April 1965 field data, including the plume photograph taken at 07.15, along with concurrent wind and temperature profiles and computer resolved plume profile plots.

The 1580 separate plume rise observations taken at 5 min intervals at the six plants were consolidated into 133 composite observations, each covering time periods of 30 to 120 min. Duration of composite periods was determined by the constancy of principal meteorological and operational parameters. Therefore each of the composite observations represents from six to twenty-four 5 min consecutive observations. The composite observations were next classified into stability groups based on the temperature gradient from stack top to plume top. The stability classifications and ranges were:

stability classification	temperature gradient range K/100 m	group
inversion	$\Delta \theta / \Delta z > 1.00$	1
stable	$0 < \Delta \theta / \Delta z \leqslant 1.00$	2
neutral and unstable	$\Delta \theta / \Delta z \leqslant 0$	3

F. W. THOMAS, S. B. CARPENTER AND W. C. COLBAUGH

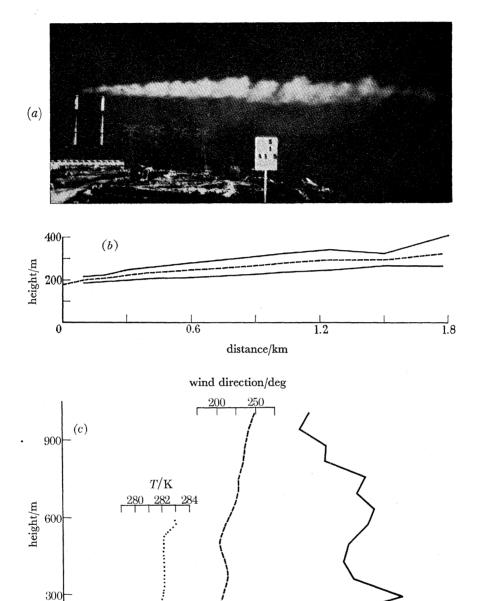


FIGURE 1. Data from typical day of field operation at the Paradise steam plant on 1 April 1965. (a) Plume photograph at 07.15 h; (b) wind speed and direction profile at 07.16 h, and temperature profile at 07.20 h; (c) plume profile derived from photographs: the stack height is 183 m.

wind speed/m s^{-1}

12

<u>1</u>5

The sixty-six composite observations for single stack operation classified according to these stability groups and average wind speed classes are compiled in table 2. Also included in this table are heat emission rate, flue gas velocity, and average plume rise at nine specified downwind distances out to 1.219 km.

Table 2. Average plume rise with distance from source by stability classes single stack operation

	1219	80	115	102	124	171	1	307	363	457	363	373	295	329	187	308	1	280	188	219	204	150	1	154	154		165	1	135	150
	1067	98	104	95	114	168	I	330	338	447	334	362	275	309	183	289	1	264	182	201	192	139	191	143	167	1	158		105	132
	914	74	86	98	104	166		323	313	433	307	344	255	292	193	560	182	236	173	182	178	125	175	131	153	94	134	106	93	107
/nwind (m	762	62	100	81	91	163	377	331	283	417	277	327	230	273	195	227	165	218	165	159	162	112	154	113	134	98	116	110	85	66
plume rise (m) at distance downwind (m)	610	49	96	73	77	156	345	307	250	394	247	300	203	247	191	194	141	195	153	140	147	95	133	98	110	77	102	93	70	98
(m) at dis	457	44	84	64	62	142	356	302	217	358	214	273	166	214	185	166	137	174	136	115	126	74	106	99	98	64	84	78	62	72
plume rise	305	46	99	56	48	109	323	261	203	312	175	238	126	169	160	119	121	139	112	92	102	55	88	51	70	61	52	63	47	56
	152	32	44	38	30	29	262	168	145	240	124	169	7.7	107	104	74	87	06	80	62	71	34	62	40	51	50	56	43	56	36
	76	20	31	26	16	46	190	118	92	178	80	117	48	99	57	44	53	54	59	33	46	18	37	27	32	34	14	56	13	22
	0	0	0	0	0	25	72	14	12	94	12	33	24	က	0	0	0	9	23	0	1	0	0	0	0	0	0	0	0	0
	$\bar{u}/\mathrm{m~s^{-1}}$	8.5	8.1	8.3	16.8	4.6	2.5	1.9	3.3	3.4	3.7	3.1	4.1	4.5	4.7	5.2	5.2	4.7	6.0	7.7	6.9	13.8	8.0	8.4	8.2	10.0	10.6	10.8	11.4	10.7
	$V_{\rm s}/{ m m~s^{-1}}$	15.6	16.4	16.0	19.1	15.3	22.9	17.8	17.8	17.1	17.1	17.5	17.8	17.1	16.4	16.4	19.2	17.4	16.4	15.6	16.0	19.1	19.2	19.1	19.2	18.0	19.1	18.0	15.6	17.7
stability	group†	1	П		1	П	1	61	67	0 1	67		7	67	61	67	67		7	67		7	7	67		2	67	7	63	
temperature gradient $\Lambda \theta / K$	$\frac{\Delta z}{\Delta z} / \frac{x}{100 \text{ m}}$	1.73	1.37	1.55	1.12	10.6	1.32	0.01	0.17	0.30	0.65	0.28	0.44	0.59	0.01	0.08	0.11	0.25	0.85	0.28	0.57	0.37	0.27	0.09	0.18	0.02	0.02	.0.01	0.18	90.0
t 10-7 O		1.70	1.86	1.78	2.44	1.77	1.79	2.02	2.02	1.87	1.87	1.93	2.02	1.87	1.86	2.00	2.46	2.04	1.86	1.84	1.85	2.44	2.46	2.44	2.45	2.18	2.44	2.18	1.84	2.16
number	number observations	1	4	average	38	21	4	10	6	13	12	average	8	11	7	30	43	average	5	22	average	39	42	41	average	28	40	26	25	average
steam	number	1				61	9	٦																						

		1219	1	450	303	270	312	300	250	555	877	334	259	207	220	226	359	808	215	165	232	180	1	1	-	1	1	1	I	1	1
		1067	ļ	460	276	287	276	317	220	464	235	317	247	192	210	215	335	198	199	155	219	173	165	1	ı		١	ı	149	I	149
		914		417	248	322	239	266	196	386	243	290	227	178	194	808	310	189	183	144	204	167	143		1		I	301	155		228
	nwind (m)	762		444	216	347	202	259	166	335	251	278	192	159	181	194	274	172	156	130	182	155	109	I	278		278	238	155	138	177
	plume rise (m) at distance downwind (m)	610		414	173	341	161	248	135	285	249	251	171	127	168	184	250	138	125	104	158	124	103	1	316	304	310	214	130	134	159
	(m) at dis	457	I	382	130	300	121	238	112	224	234	218	128	95	161	175	220	103	94	78	132	93	16	333	286	243	287	190	103	129	141
	plume rise	305		322	87	228	81	185	83	171	182	167	06	63	118	132	183	69	62	52	96	62	72	331	205	808	248	154	08	126	120
<u></u>		152	430	192	43	150	41	109	63	117	124	141	99	32	89	92	187	34	31	26	58	31	46	314	136	163	204	111	22	98	85
Table 2 (cont.)		92	451	124	22	112	20	20	47	72	95	113	43	16	43	49	81	17	16	13	35	16	56	258	101	120	160	81	37	63	09
T_{AB}		0	476	26	0	73	0	32	_	27	99	104	0	0	19	21	5	0	0	0	9	0	0	130	22	99	69	18	70	18	14
		$\bar{u}/\mathrm{m~s^{-1}}$	2.1	2.5	2.5	2.5	8.7	2.9	3.1	2.1	3.2	2.6	4.6	5.0	5.0	5.1	5.2	5.4	5.8	5.9	5.3	6.9	10.4	2.2	2.4	3.4	2.7	4.1	4.8	5.2	4.7
		$V_{\rm s}/{\rm m~s^{-1}}$	15.3	15.3	15.4	15.3	15.4	15.6	15.2	15.3	15.3	15.3	14.8	16.1	15.5	15.6	14.8	16.4	16.1	16.1	15.7	15.4	14.8	22.9	22.9	22.9	22.9	22.9	22.9	22.9	22.9
4)	stability	group	7	63	67	67	67	67	67	61	67		67	81	67	61	67	67	81	63		2	67	67	67	73		87	67	67	
emperature	grådient $\Delta \theta / \mathbf{K}$		0.30	0.09	0.41	0.36	0.63	0.44	0.06	0.23	0.97	0.39	0.10	0.22	0.68	0.74	0.61	0.39	0.11	0.72	0.45	0.30	0.13	0.04	0.09	0.49	0.21	0.25	0.02	0.22	0.16
	10-7 0,		1.70	1.70	1.76	1.77	1.76	1.71	1.52	1.70	1.77	1.71	1.50	1.74	1.65	1.71	1.50	1.75	1.74	1.74	1.67	1.73	1.50	1.79	1.57	1.79	1.72	1.57	1.77	1.57	1.64
	number of	observations	15	13	4	23	က	17	88	14	22	average	25	7	19	16	24	6	œ	9	average	10	27	9	10	က	average	6	က	∞	average
	steam plant	number ol	7																					9							

 $rac{\Delta heta}{\Delta z} = ext{K/100 m}.$

where

 $\frac{\Delta \theta}{\Delta z} \leqslant 0$

-∨

0

 $\frac{\Delta\theta}{\Delta z} > 1$

 $\frac{2}{\Delta z}$

9	10 00	90	രൂറ	N 0	2		ິຄາ	ਜ ਜ	, 4 1	2	οο ₁ .	00		,	
136	375 178	178	179	24 18	17.	792	56	35 ₄) <u>7</u>	13,	ŏ	6	1 1	I	
117	354 256 171	214	167	188 165	154	 251	251	330 276	150 245	109	109	109	119	119	
117	340 221 160	191	143	167 144	133	228	228	321 251	228	109	$\begin{array}{c} 102 \\ 103 \end{array}$	103	125	125	
103	$\frac{327}{184}$	168	1119	$\frac{148}{126}$	115	$\begin{array}{c} 214 \\ 198 \end{array}$	206	286 220	93 200	86	88 107	86	103	103	
93	$\frac{304}{147}$	151	95 96	126	112	176 171	174	251 196	74 174	66	69 89	46	66	66	
77	$\frac{269}{110}$	121	71 76	102 83	84	$\begin{array}{c} 160 \\ 142 \end{array}$	151	194 157	55 135	81	60 67	64	77	77	
61	$\frac{228}{109}$	113	67	78	65	127 111	119	135 109	37 94	63	54 62	58	63 73	89	
42	160 93 94	94	50 29	54 44	44	93 74	84	76	19 52	45	41 43	42	44	58	on group
21	97 59 59	59	31	34 27	25	64 59	62	46 37	31	24	27 25	56	23 25	24	Stability classification group
0	0 0	0	0 0	• •	0	13 0	7	16	15	0	0 0	0	0 F	0	Stability
6.5	2.6 4.9 5.7	6.3	6.8	7.3	10.9	3.8 4.4	4.1	5.8	6.3	6.6	8.3 9.5	8.9	6.0	6.1	•
22.9	16.4 15.6 16.4	16.0	15.6 15.6	15.3 15.5	15.6	$\frac{15.3}{15.2}$	15.3	15.5 15.6	15.5	14.8	180. 18.0	18.0	22.9 24.5	23.7	
63	ကကက		က က	က	ಣ	ကက		ကက	3	က	က က		ကက		
0.19	0 - 0.09	-0.06	-0.05 -0.13	-0.17 -0.12	-0.04	-0.03 -0.00	-0.02	-0.04 -0.02	-0.16	0	-0.02	-0.01	-0.17 -0.18	-0.18	
1.77	$\frac{1.86}{1.70}$	1.85	1.70	1.78	1.84	$\begin{array}{c} 1.70 \\ 1.52 \end{array}$	1.61	1.65	1.73	1.50	$\begin{array}{c} 2.18 \\ 2.18 \end{array}$	2.18	1.77	1.68	
1	6 3 31	average	2.5	21 average	23	$\frac{12}{29}$	average	20	average	56	29 27	average	67 1-	average	
	п					61					1		9		

F. W. THOMAS, S. B. CARPENTER AND W. C. COLBAUGH

DATA ANALYSIS AND EVALUATION

Point of effective plume rise

Often the most difficult point to establish from a plume profile is the height which the rise may attain attributable to buoyancy and momentum. A plume ascending and dispersing in neutral or unstable conditions will continue to expand vertically because of turbulent diffusion (eddies) after its momentum and buoyancy are spent. A number of procedures have been used by other investigators to establish the plume height resulting from plume buoyancy and momentum. In this study a relatively simple procedure, considered to be quite realistic, was evolved. This procedure (Carpenter, Frizzola, Smith, Leavitt & Thomas 1968) was based on preliminary

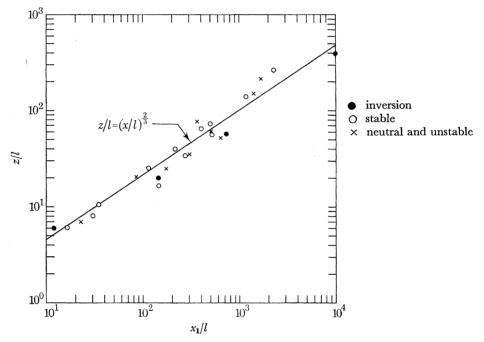


FIGURE 2. End of initial plume rise phase.

results of limited analyses of these data. Plume rise, Δh , was defined as elevation of the plume at the point in distance and space where rise of the plume centreline as a function of distance reached a minimum value or became constant. This is a finite value which can be derived from the observational data. The plume often continued to ascend beyond this point. With this criterion, effective termination of plume rise normally occurred 457 to 1219 m from the source. For uniformity, the Δh values used for comparison with calculated values throughout this study were the observed values at 1.2 km. In most instances observations extended well beyond this point.

In addition, to a definition of criteria for establishing plume rise, it is desirable to determine whether one is observing the initial phase where source effects and mean winds are important. Difference in semantics and interests on these questions probably accounts for a large portion of the differences in plume rise estimates. The data may be examined in respect to the initial plume rise phase in accordance with the relation set out by Csanady (1961) who defines the initial flux, F, due to buoyancy and momentum as

$$F = gV_{\rm s}r^2\Delta T/T. \tag{2}$$

ABLE 3, x/l and z/l values—initial plume rise phase	Paradise steam plant
TAB	

	$\sqrt{l/z}$	21.1	34.6	53.8	69.2	82.7	95.2	102.9	127.0	144.2				57.9							
61 <	$\sqrt{ z }$ $ z $	73.3	146.5	293.1	439.6	586.2	732.7	879.6	1026.0	1172.0	ഹ ≺	l/x	100.3	200.6	401.5	601.7	802.2	1003.0	1203.9	1404.0	1604.5
ে ⊲	$\sqrt{l/z}$	12.3	19.6	26.9	33.1	42.3	51.5	58.9	64.2	59.2	ന ⁻	$\sqrt{l/z}$	13.5	21.8	30.1	33.2	40.9	50.8	53.4	56.5	50.8
	1/x	29.3	58.6	117.2	175.8	234.5	293.1	351.7	410.3	468.9	က ≺	1/	9.5	9.0	6.7	6.9	5.8	9.8	4.0	2.7	1.7
	$\sqrt{l/z}$	14.8	22.9	32.9	40.6	47.4	52.3	57.4	61.6	65.5		*	ë	72	15'	23(31	308	47	55	63
6 7	1/x	24.6	49.2	98.3	147.5	196.7	245.8	295.0	344.1	393.3	ගෙ -	[]/z	10.3	16.9	24.9	31.8	40.6	48.3	55.2	63.2	72.4
4	$\sqrt{l/z}$ l/x	4.8	8.0	12.4	15.5	17.4	19.5	21.1	23.6	24.9		1/x	29.2	58.4	116.7	175.1	233.5	291.9	350.5	408.7	467.1
61 -	(_		1/2	8.1	13.0	15.6	16.7	20.8	23.2	26.3	29.5	24.6
67	$\sqrt{l/z}$ l/x	3.3	4.7	6.7	7.7	8.4	9.5	9.6	10.1	10.4	eo -	z	10.5	21.0	42.0	63.0	84.1	05.1	26.2	47.1	68.1
	1/2	51.6	8.96	154.8	200.0	248.4	293.6	335.5	367.8	400.0	ග -	$\int_{l/z}^{l/z} l/x$	1.7	2.9	4.1	4.8	5.4	5.9	6.1	6.3	6.7
-	1/x	245.8	491.6	983.3	1475.0	1967.0	2458.0	2950.0	3441.0	3933.0	က	l/x	1.4	2.7	5.5	8.2	10.9	13.7	16.4	19.1	21.8
													34.0	64.2	103.8	139.6	179.3	211.3	235.9	262.3	283.1
+	1/x	43.1	86.1	172.2	258.3	344.4	430.5	516.6	602.7	688.8	61	1/x	143.8	287.6	575.2	862.7	1150.3	1438.0	1726.2	2013.1	2300.0

† Stability classification data group.

F. W. THOMAS, S. B. CARPENTER AND W. C. COLBAUGH

Widows Creek steam plant

(cont.)
က
TABLE

		1/z	27.6	51.7	72.4	93.1	103.4	112.6	125.2	125.2	157.4.
	က -	$\sqrt{ z } \frac{1/x}{z}$	87.6	175.2	350.3	525.3	700.4	875.5	1051.1	1226.0	1401.0
		1/2	10.0	16.8	30.3	43.6	56.1	64.5	72.9	7.67	
	ണ -	$\frac{1/z}{l/x}$	24.6	49.2	98.3	147.5	196.7	245.8	295.1	234.1	
		$\frac{1}{z} \frac{1}{x}$	4.7	6.4	9.0	11.4	13.2	15.6	17.3	19.0	19.9
	က	1/x	5.8	11.5	23.1	34.6	46.2	57.7	69.3	80.8	92.4
ınt		1/z	32.1	56.8	88.9	112.3	127.2	134.6	176.6	203.8	
Fallatin steam plant	. 61	$\sqrt{l/z}$ l/x	94.1	188.2	376.4	564.6	752.9	941.1	1130.0	1317.5	
Gallatin		z/l	6.4	12.4	24.8	37.2	49.6	62.0	8.99	69.2	72.0
	61 ~	$\int_{ z } \frac{1/x}{1/x}$	30.5	61.0	121.9	182.9	243.8	304.8	365.9	426.7	487.7
		1/z	5.9	8.6	16.3	22.4	26.8	30.8	34.6	37.1	39.3
	01 ₹	$\frac{1/z}{2} = \frac{1/x}{2}$	12.9	25.8	51.7	77.5	103.3	129.2	155.1	180.8	206.7
	. 61	l/x	1.8	3.6	7.2	10.8	14.4	18.0	21.6	25.2	28.8
			5.3	7.7	12.6	16.4	18.0	18.8	19.1	19.4	19.7
	-	l/x	8.8	17.6	35.1	52.7	70.2	87.8	105.4	122.9	140.5

сı -										
	l/z	22.2	44.4	88.9	133.3	177.7	222.1	266.7	311.0	data group.
	$\sqrt{l/z}$	6.4	9.1	12.9	15.1	17.0	19.0	24.4	16.0	ssification dat
6/1 -	1/x	8.2	16.3	32.7	49.0	65.3	81.7	98.1	114.4	Stability clas
	z	3.5	4.4	5.4	6.2	6.7	6.9			• !
64.4	1/x	1.7	3.3	9.9	6.6	13.2	16.5			
*	1/z	3.1	4.2	5.2	5.7	5.5	6.1			
Π,										

5.7 13.7 16.0 18.2 23.3 24.3 29.5 28.1

18.0 35.9 71.9 107.8 143.7 179.7 215.7 251.6

6.1 12.2 17.8 22.4 27.1 30.0 34.1

Table 4. Principal operational and meteorological parameters

PLUME RISE ESTIMATES

	Τ.	ABLE 4.	. Princ	IPAL O	PERATI	ONAL A	ND ME	TEOROLO	GICAI	PAR	AMETER	S	
steam	number												
plant	of												
num-	obser-	V_s	\bar{u}_4	$\bar{u_3}$	$ar{u_2}$	$ar{u}_1$	\bar{u}	$\Delta \theta / \Delta z$	ΔT	T.	$10^{-7}Q_H$		Δh
ber	vations	${ m m~s^{-1}}$	m s ⁻¹	${ m m~s^{-1}}$	$\mathrm{m}\;\mathrm{s}^{-1}$	$m s^{-1}$	$m s^{-1}$	$\overline{\text{K}/100 \text{ m}}$	K	K	cal s ⁻¹	m³ s-1	m
1	1	15.6	4.8	6.4	12.4	9.4	8.5	1.73	120	291	1.70	5.46	89
	2		5.5	4.6	7.6	6.0		-0.05	113	298	1.70	5.59	179
	3		4.7	4.6	5.5	5. 0	4.9	-0.09	111	300	1.70	5.63	256
	4	16.4	7.9	8.8	9.3	9.2	8.1	1.37	121	291	1.86	5.70	115
	5	*	4.8	6.0	7.3	6.7	6.0	0.85	120	293	1.86	5.73	188
	6		2.3	2.2	3.4	2.8	2.6	0.00	116	297	1.86	5.81	375
	7 8	17.0	5.3	5.0	3.9	4.5	4.7	0.01	114	298	1.86	5.84	195
	8 9	17.8	$5.4 \\ 2.7$	4.4 2.9	$\begin{array}{c} 2.6 \\ 3.5 \end{array}$	$3.5 \\ 3.2$	$\frac{4.1}{3.3}$	$0.44 \\ 0.17$	$\frac{119}{117}$	$\begin{array}{c} 293 \\ 295 \end{array}$	$\begin{array}{c} 2.02 \\ 2.02 \end{array}$	$6.25 \\ 6.30$	$\begin{array}{c} 295 \\ 363 \end{array}$
	10		$\frac{2.7}{3.5}$	$\frac{2.9}{1.5}$	$\frac{3.5}{2.5}$	$\frac{3.2}{2.0}$	1.9	0.17	113	$\frac{295}{299}$	2.02 2.02	6.38	331
	11	17.1	$\begin{array}{c} \textbf{3.3} \\ \textbf{4.3} \end{array}$	3.5	4.7	4.1	$\frac{1.5}{4.5}$	0.59	119	293	1.87	6.02	329
	12		2.7	3.7	4.2	3.9	3.7	0.65	120	$\frac{290}{292}$	1.87	5.99	363
	13		1.6	2.7	5.2	3.9	3.4	0.30	116	295	1.87	6.06	457
	21	15.3	5.1	7.6	8.7	8.1		-0.17	120	297	1.78	5.36	242
	22	15.6	4.8	6.0	9.2	7.5	7.7	0.28	124	292	1.84	5.40	219
	23		9.9	8.8	11.6	10.3	10.9	-0.04	121	$\bf 294$	1.84	5.44	177
	24		6.9	7.7	7.0	7.3		-0.13	118	297	1.84	5.50	145
	25		11.3	10.9	10.0	10.5	11.4	0.18	125	291	1.84	5.37	135
	26	18.0	10.3	10.4	9.8	10.2	10.8	0.01	137	275	2.18	5.93	110
	27		10.2	10.0	9.8	10.0	9.5	0.00	137	275	2.18	5.94	108
	28		9.8	7.3	10.1	8.8	10.0	0.02	136	277	2.18	5.97	94
	29		7.4	8.0	7.3	7.6		-0.02	136	$\begin{array}{c} 277 \\ 279 \end{array}$	$\frac{2.18}{2.00}$	$\begin{array}{c} 5.97 \\ 5.44 \end{array}$	$\frac{109}{308}$
	30 31	16.4 —	$6.9 \\ 5.9$	4.5 5.8	$5.1 \\ 5.0$	$\frac{4.8}{5.4}$	5.2	$0.08 \\ -0.02$	$\frac{137}{135}$	281	$\frac{2.00}{2.00}$	5.44 5.48	178
	38	— 19.1	10.7	13.3	21.9	17.9	16.8	$\frac{-0.02}{1.12}$	140	283	2.44	6.30	124
	39	19.1	9.6	11.3	19.1	15.3	13.8	0.37	137	286	2.44	6.35	150
	40		8.2	8.2	14.2	10.7	10.6	0.02	135	288	2.44	6.40	165
	41	*****	8.2	7.5	8.2	7.8	8.4	0.09	132	291	2.44	6.47	154
	42	19.2	5.2	5.7	9.1	7.3	8.0	0.27	145	279	2.46	6.23	191
	43		4.6	4.6	6.8	5.8	5.2	0.11	144	280	2.46	6.25	182
2	3	15.4	3.7	6.1	1.8	4.0	2.8	0.63	111	299	1.76	5.11	312
_	4		2.9	2.6	2.2	2.4	2.5	0.41	114	296	1.76	5.07	303
	6	16.1	3.8	4.9	8.2	6.5	5.9	0.72	116	294	1.74	5.26	165
	7	-	4.8	3.2	6.6	4.9	5.0	0.22	114	296	1.74	5.29	207
	. 8		5.2	5.8	4.8	5.3	5.8		111	299	1.74	5.34	215
	9	16.4	2.5	5.2	8.6	6.8	5.4		113	297	1.75	5.41	208
	10	15.4	5.8	6.8	9.4	8.2	6.9	0.30	112	298	1.73	5.11	180
	11		6.5	6.4	7.4	7.0		-0.16	109	301	1.73	5.16	130
	12	15.3	3.8	2.9	4.1	3.5		-0.03	110	300	1.70	5.09	214
	13	-	2.4	1.8	2.1	1.9	2.2	$0.09 \\ 0.23$	109	301 300	$1.70 \\ 1.70$	$\begin{array}{c} 5.11 \\ 5.09 \end{array}$	$\frac{460}{555}$
	$\frac{14}{15}$	_	$\begin{array}{c} \textbf{2.6} \\ \textbf{2.8} \end{array}$	2.2	$\begin{array}{c} 1.7 \\ 1.4 \end{array}$	1.8	$2.1 \\ 2.1$	0.23	110 110	300	1.70	5.09 5.10	476
	16	 15.6	2.8	4.6	6.5	5.5	5.1	0.74	114	296	1.71	5.15	226
	17		1.8	3.8	3.7	3.7	2.9	0.44	112	298	1.71	5.18	317
	18	-	5.3	4.6	8.7	6.7	6.1	-0.02	107	203	1.71	5.26	314
	19	15.5	3.3	3.6	8.6	6.2	5.0	0.68	113	297	1.65	5.13	220
	20	-	4.6	5.2	6.1	5.7	5.8	-0.04	106	304	1.65	5.25	354
	21	15.3	1.7	4.8	4.3	4.6	4.6	1.06	115	295	1.77	5.03	171
	22	******	1.6	4.2	3.0	3.6	3.2		113	297	1.77	5.06	251
	23		2.7	2.6	1.9	2.3	2.5		111	299	1.77	5.09	347
	24	14.8	2.8	4.0	5.3	4.7	5.2		124	282	1.50	4.67	359
	25		4.1	6.0	3.6	4.8	4.6	0.10	121	286	1.50	4.73	259
	26	********	8.2	7.9	11.3	9.8	9.9		117	289	1.50	4.78	137
	27	150	6.7	11.6	11.7	11.7	10.4		$\frac{117}{133}$	$\begin{array}{c} 290 \\ 273 \end{array}$	$1.50 \\ 1.52$	$\begin{array}{c} \textbf{4.79} \\ \textbf{4.66} \end{array}$	$\frac{165}{250}$
	28	15.2	2.7	3.3	5.1	4.3 4.9	3.1		131	$\begin{array}{c} 275 \\ 275 \end{array}$	1.52 1.52	$\frac{4.60}{4.69}$	$\frac{263}{263}$
_	29		4.8	4.2	5.7		4.4						
6	1	22.9	4.7	5.1	5.7	5.4	6.5		119	283	1.77	$5.08 \\ 5.14$	136
	2 .	-	6.6	6.4	5.3	5.8	6.0		$\frac{116}{115}$	$\begin{array}{c} 286 \\ 287 \end{array}$	$1.77 \\ 1.77$	5.14 5.16	$\begin{array}{c} 125 \\ 155 \end{array}$
	3		$6.0 \\ 1.5$	6.8 3.3	$\frac{4.1}{4.3}$	5.5 3.8	$\frac{4.8}{2.5}$		$\frac{115}{121}$	287 279	1.77 1.79	5.16 5.04	377
	4 5		1.9	3.5	$\begin{array}{c} 4.3 \\ 4.1 \end{array}$	3.8	3.4		$\frac{121}{117}$	283	1.79	5.04 5.12	304
	5 6	_	3.5	1.6	$\frac{4.1}{2.2}$	1.8	$\frac{3.4}{2.2}$		110	290	1.79	5.12 5.24	333
	7	$\frac{-}{24.5}$	5.9	6.0	6.2	6.1	6.2		118	280	1.59	5.44	73
	8	22.9	5.7	6.1	4.8	5.5	5.2		125	275	1.57	4.97	138
	9		3.3	3.2	5.7	4.4	4.1		122	278	1.57	5.03	301
	10		2.0	2.9	2.7	2.8	2.4		118	281	1.57	5.09	316

F. W. THOMAS, S. B. CARPENTER AND W. C. COLBAUGH 232

Dividing this flux by the cube of the horizontal wind speed, \bar{u}^3 , obtains a length,

$$l = F/\bar{u}^3. (3)$$

The distance variables divided by l, i.e. z/l and x/l, are dimensionless and

$$z/l = f(x/l), (4)$$

where z is plume rise and x is distance downwind. At the point x_1/l where the plume levels off, z/l becomes constant. Values of z/l and x/l were calculated for the principal wind speed and stability groupings at the nine distances out to $1.219 \,\mathrm{km}$. In most instances, a levelling of z/lvalues is evident as x/l approaches the 1.219 km distance. The values of the distance variables where z/l becomes constant for the twenty-six summary observations in table 3 are plotted in figure 2. Here a two-thirds slope, as observed by Csanady (1961) for the '\frac{2}{3} power law' relation, fits the data quite well $z/l = (x/l)^{\frac{2}{3}}$. (5)

Compilation—estimates of quantities for plume rise calculations

Either direct measurements of reliable estimates of every quantity needed for computation of plume rise according to principal formulas now in use were compiled for each of the composite observations along with observed plume rise. Values of these parametres for the sixty-six composite observations based on single stack operations are shown in table 4.

Comparison between observed and calculated Δh values from major plume rise formulas

The observed plume rise was examined for correlation with principal existing plume rise formulas. Formulas selected for comparison were Holland (1953); Bosanquet, Carey & Halton (1950); Davidson-Bryant (1949); Csanady (1961); Concawe (Brummage et al. 1966); and Lucas, Moore & Spurr (1963). The formula was applied in each case as recommended by the author without benefit of adjustment factors suggested by later investigators. Plume rise was

Table 5. Observed and calculated plume rise—principal formulas

							calculated p	olume rise/	m	
	number							·		
steam	of		wind	observed	×.	Bosanquet	•			Lucas,
plant	obser-	stability	speed/	plume		Carey &	Davidson-			Moore &
number	vations	class	$\mathrm{m}\;\mathrm{s}^{-1}$	rise/m	Holland	Halton	Bryant	Csanady	Concawe	\mathbf{Spurr}
1	4	1	8.1	115	116	142	27	310	157	147
	1	1	8.5	89	102	121	24	245	145	132
	38	1	16.8	124	72	47	13	59	104	115
	10	2	1.9	331	536	6000	231	$\boldsymbol{23382}$	486	1058
	9	2	3.3	363	309	1061	107	4768	321	395
	13	2	3.4	457	280	831	97	4471	302	332
	12	2	3.7	363	257	589	87	3656	284	262
	8	2	4.1	295	249	580	80	2581	273	280
	11	2	4.5	329	211	456	66	1998	245	243
	7	$^{-}2$	4.7	195	200	898	58	1401	236	659
	30	2	5.2	308	191	602	52	1661	227	379
	43	2	5.2	182	233	643	66	$\boldsymbol{2241}$	252	369
	5	2	6.0	188	156	257	42	734	197	192
	22	2	7.7	219	120	198	28	348	162	223
	42	2	8.0	191	151	237	36	$\bf 624$	183	238
	41	2	8.4	154	143	234	33	423	175	305
	28	2	10.0	94	109	188	24	284	145	395
	40	2	10.6	165	113	170	24	218	147	395
	26	2	10.8	110	100	170	22	230	137	452
	25	2	11.4	135	81	95	16	109	121	205
	39	2	13.8	150	87	75	16	102	121	167

TABLE 5 (cont.)

calculated plume rise/m

	number ————————————————————————————————————									
steam	of		wind	observed	' : 1	Lucas,				
plant		stability	speed/	plume		Carey &	Davidson-			Moore &
number	vations	class	m s ⁻¹	rise/m	Holland	Halton	Bryant	Csanady	Concawe	Spurr
	6	3	2.6	375	361	2256	133	$\boldsymbol{8434}$	369	584
	3	3	4.9	256	177	111	51	1081	219	303
	31	3	5.7	178	174	381	46	1233	212	271
	2	3	6.8	179	127	194	32	451	171	218
	24	3	7.2	145	128	273	30	391	171	210
	21	3	7.3	$\bf 242$	122	167	29	393	166	206
	29	3	8.3	109	131	144	31	497	167	190
	27	3	9.5	108	114	103	26	338	151	166
	23	3	10.9	177	84	18	17	118	125	139
2	21	. 1	4.6	171	192	331	52	1207	234	205
	14	2	2.1	555	407	1503	155	10827	414	44 0
	15	· 2	2.1	476	407	1339	155	10827	414	412
	13	. 2	2.2	460	388	2033	145	9310	399	544
	4	2	2.5	303	352	1007	124	$\boldsymbol{7358}$	369	352
	23	2	2.5	347	353	1037	$\boldsymbol{122}$	6977	37 0	364
	3	$\frac{1}{2}$	2.8	312	314	730	105	4902	339	299
	17	2	2.9	317	297	814	102	4393	326	319
	28	$\overline{2}$	3.1	250	252	1573	93	6509	292	493
	$\frac{20}{22}$	$oldsymbol{2}$	3.2	251	276	540	87	3473	308	251
	$\frac{25}{25}$	2	4.6	259	167	598	51	1319	216	355
	7	2	5.0	207	176	43 0	50	1007	218	290
	19	$oldsymbol{2}$	5.0	220	167	324	47	905	213	216
	16	2	5.1	226	169	311	46	845	213	$\begin{array}{c} 210 \\ 211 \end{array}$
	24	$-\frac{2}{2}$	5.2	359	148	327	43	977	197	$\frac{211}{212}$
	9	$\frac{2}{2}$	5.4	208	164	333	46	826	207	242
	8	$\frac{2}{2}$	5.8	215	164	36 0	40	605	195	320
	6	$\frac{2}{2}$	5.9	165	149	253	40	632	193	199
	10	$\frac{2}{2}$	6.9	180	126	$\begin{array}{c} 203 \\ 212 \end{array}$	30	368	171	228
	27	2	10.4	165	74	103	16	105	117	$\begin{array}{c} 223 \\ 221 \end{array}$
	12	3	3.8	214	225	600	68	1827	265	391
	29	3	4.4	263	178	658	57	2039	$\begin{array}{c} 205 \\ 225 \end{array}$	328
	$\frac{23}{20}$	3	5.8	354	144	252	38	500	190	254
	18	3	6.1	314	141	$\frac{232}{225}$	36	${\bf 424}$	186	244
	11	3	6.9	130	126	$\frac{225}{156}$	3 0	349	171	$\frac{244}{216}$
	$\frac{11}{26}$	3	9.9	137	78	69	30 17	125	121	$\frac{210}{145}$
6	4	1	2.5	377	373	565	182	11471	372	264
Ū	6	2	2.2	333	424	2492	213	14186	410	675
	10	2	2.2	$\frac{333}{316}$	352	$\begin{array}{c} 2452 \\ 1772 \end{array}$	$\begin{array}{c} 213 \\ 192 \end{array}$	13734	360	510
	5	2	3.4	304	$\frac{352}{274}$	614	118	4304	296	$\frac{310}{290}$
	9	2 2	$\begin{array}{c} 3.4 \\ 4.1 \end{array}$	304 301	206	595	91	2864	$\begin{array}{c} 290 \\ 241 \end{array}$	303
	3	2	$\begin{array}{c} \textbf{4.1} \\ \textbf{4.8} \end{array}$	301 155	200 196	595 706	91 78	$\begin{array}{c} 2804 \\ 1495 \end{array}$	$\begin{array}{c} 241 \\ 227 \end{array}$	$\begin{array}{c} 303 \\ 542 \end{array}$
	8	2	$\frac{4.8}{5.2}$	138	162	418	66	$1495 \\ 1458$	201	$\begin{array}{c} 342 \\ 277 \end{array}$
	1	$\frac{z}{2}$	$\begin{array}{c} 5.2 \\ 6.5 \end{array}$	136	$\begin{array}{c} 162 \\ 142 \end{array}$	$\begin{array}{c} 418 \\ 274 \end{array}$	48	638		
	2	3	6.0		154	$\frac{274}{217}$	48 53		181	265 250
	Z .	ð	0.0	125	194	411	ออ	778	192	250

calculated with these equations (table 5), and plotted against observed values for single stack operations (figures 3 to 8). Points in these plots are coded according to wind speeds less than $3 \,\mathrm{m \, s^{-1}}$ and equal to or greater than $3 \,\mathrm{m \, s^{-1}}$.

The relation of observed plume rise with calculated plume rise shown by the various formulas is as follows:

(1) Holland formula (figure 3) shows fairly good agreement with a tendency to slightly underestimate plume rise.

F. W. THOMAS, S. B. CARPENTER AND W. C. COLBAUGH

- (2) Bosanquet et al. formula (figure 4) overestimates plume rise and induces large scatter.
- (3) Davidson-Bryant formula (figure 5) seriously underestimates plume rise.
- (4) Csanady formula (figure 6) seriously overestimates plume rise, but with moderate scatter.
- (5) Concawe formula (figure 7) shows good aggreement.
- (6) Lucas et al. formula (figure 8) has a tendency to overestimate the plume rise and induce moderate scatter.

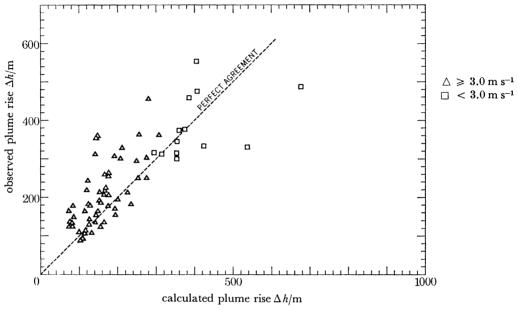


FIGURE 3. Relation between observed plume rise and that calculated by the Holland formula: $\Delta h = (1.5\ V_{\rm s}d + 4\times 10^{-5}Q_{\rm H}/\bar{u}.$

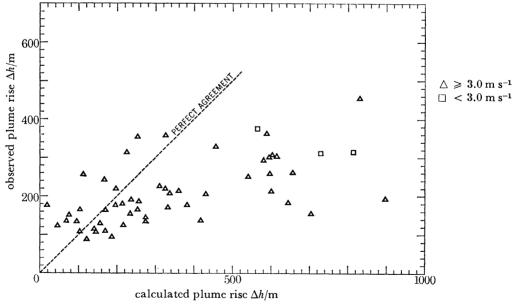


FIGURE 4. Relation between observed plume rise and that calculated by the Bosanquet, Carey & Halton formula:

$$\Delta h \, = \, \frac{4.77 (QV_{\rm s})^{\frac{1}{2}}}{(1 + 0.43 \bar{u}/V_{\rm s})} \, \bar{u}^{+} \frac{6.47 g Q D (\ln \, J^2 + 2/J - 2)}{\bar{u}^3 \, T}$$

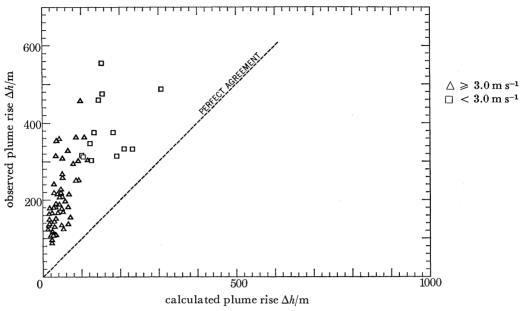


Figure 5. Relation between observed plume rise and that calculated by the Davidson-Bryant formula: $\Delta h = d(V_{\rm s}/\bar{u})^{1.4} \ (1+\Delta\,T/T_{\rm s})$

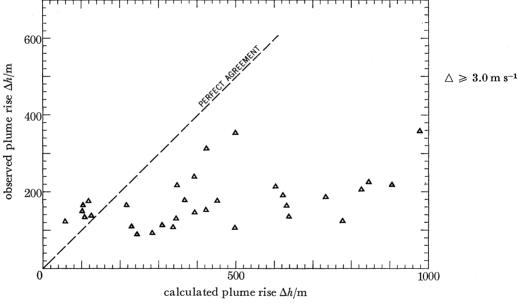


Figure 6. Relation between observed plume rise and that calculated by the Csanady formula: $\Delta h = 250 \ F/\bar{u}^3$.

Individual points shown in these plots represent specific observations averaged over periods when some variability in meteorological parameters was inevitable and some fluctuation would normally be expected in the results.

Optimization of formulas based on observed plume rise

On the basis of relation shown in table 5 where observed and calculated plume rise values are listed and in figures 3 to 8 where these values are plotted, the Concawe and Csanady plume rise

235

F. W. THOMAS, S. B. CARPENTER AND W. C. COLBAUGH

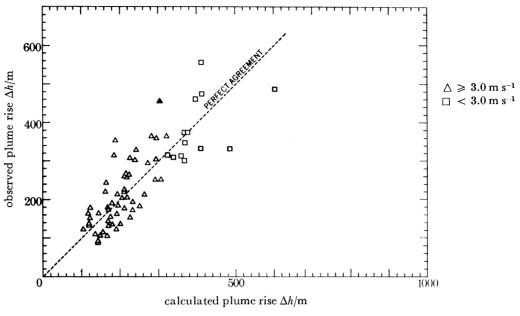


FIGURE 7. Relation between observed plume rise and that calculated by the Concawe formula: $\Delta h = 0.175 \ Q_{\rm H}^{\frac{1}{2}}/\bar{u}^{\frac{3}{4}}$.

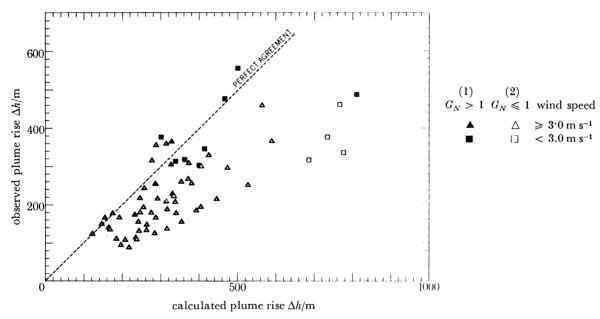


FIGURE 8. Relation between observed plume rise and that calculated by the Lucas, Moore & Spurr formulae: (1) $\Delta h = (0.7^{\alpha}/\bar{u}) (Q_{\rm N}/G_{\rm N})^{\frac{1}{4}}$ and (2) $\Delta h = \alpha Q_{\rm N}^{\frac{1}{4}}/\bar{u}$, where $\alpha = 475 + 2(h_{\rm c} - 100)$ m² s⁻¹ MW⁻¹.

formulas were selected for optimization by the process of multiple regression for best conformance with the plume rise values observed in this extensive study. In this process the basic elements of each formula were retained, but coefficients and exponents were modified to yield best agreement with observations. Fit of the basic formula with observed values, amenability to the regression technique, and inclusion of significant meteorological parameters were the bases of this selection. In optimizing these formulas, only observations where analyses indicated that full rise attributable

Table 6. Observed and calculated plume rise optimized AND TWO-THIRDS POWER LAW FORMULAS

PLUME RISE ESTIMATES

steam	number	MILE	wind	observed		ulated plume ris	e/m
plant	of	stability	speed/	plume	Concawe	Csanady	2 power
number	observations	class	m s ⁻¹	rise/m	(optimized)	(optimized)	law
1	4	1	8.1	115	164	141	140
	1	1	8.5	89	152	128	128
	38	1	16.8	124	111	88	76
	10	2	1.9	331	465	523	645
	9	2	3.3	363	317	333	374
	13	2	3.4	457	300	317	354
	12	2	2.7	363	283	289	323
	8	2	4.1	295	273	$\bf 274$	298
	11	2	4.5	329	247	248	266
	7	2	4.7	195	239	246	255
	30	2	5.2	308	230	241	249
	43	2	5.2	182	252	254	266
	5	2	6.0	188	202	189	194
	22	2	7.7	219	169	163	156
	42	2	8.0	191	187	177	172
	41	2	8.4	154	180	167	158
	28	2	10.0	94	152	146	134
	40	2	10.6	165	153	140	127
	26	2	10.8	110	144	138	125
	25	2	11.4	135	129	120	106
	39	2	13.8	150	128	110	96
	6	3	2.6	375	360	400	464
	3	3	4.9	256	223	235	239
	31	3	5.7	178	216	${\bf 225}$	227
	2	3	6.8	179	178	181	173
	24	3	7.2	145	177	176	167
	21	3	7.3	242	173	175	165
	29	3	8.3	109	173	171	162
	27	3	9.5	108	157	154	142
	23	3	10.9	177	133	126	111
9	01		4.0	1.71	207	910	20.4
2	21	1	4.6	171	237	218	234
	1	2	1.0	1025	682	800	1114
	2	2	1.3	488	569	657	859
	5	2	1.3	777	569	649	859
	14	2	2.1	555	402	440	528
	15	2	2.1	476	402	437	526
	13	2	2.2	460	389	428	506
	4	2	2.5	303	361	381	447
	23	2	2.5	347	362	378	442
	3	2	2.8	312	334	336	389
	17	2	2.9	317	322	336	383
	28	2	3.1	250	292	252	396
	22	2	3.2	251	305	293	335
	25	2	4.6	259	220	243	252
	7	2	5.0	207	222	224	230
	19	2	5.0	220	217	211	220
	16	2	5.1	226	218	208	216
	24	2	5.2	359	202	211	219
	9	2	5.4	208	211	207	211
	8	2	5.8	215	200	199	197
	6	2	5.9	165	198	188	190
	10	2	6.9	180	177	168	162
	27	2	10.4	165	125	124	110
							24=2

F. W. THOMAS, S. B. CARPENTER AND W. C. COLBAUGH

TABLE 6 (cont.)

steam	number		wind	observed	calc	ulated plume ri	ise/m
plant	of	stability	speed/	plume	Concawe	Csanady	² / ₃ power
number	observations	class	$m s^{-1}$	rise/m	(optimized)	(optimized)	law
2	12	3	3.8	214	267	279	305
	29	3	4.4	263	$\boldsymbol{229}$	265	278
	20	3	5.8	354	196	196	192
	18	3	6.1	314	192	189	183
	11	3	6.9	130	177	174	164
	26	3	9.9	137	130	130	116
6	4	1	2.5	377	364	360	443
	6	2	2.2	333	398	439	520
	10	2	2.4	316	353	418	492
	5	2	3.4	304	294	302	337
	9	2	4.1	301	247	270	290
	3	2	4.8	155	230	237	243
	8	2	5.2	138	207	226	231
	1	2	6.5	136	187	185	181
	2	3	6.0	125	197	202	198

to momentum and buoyancy had been attained were considered; thus the optimized calculations shown in table 6 were based on the twenty-six summary observations according to wind speed and stability classification.

The Csanady formula with the \bar{u}^3 term in the denominator is obviously not useful with low or high wind speeds. However, it was selected for optimization because it contains the significant meteorological parameters required for evaluating the effect of ambient conditions, especially stability. The simple Concawe formula was selected because of its superior agreement with observations. It is considered that optimization of these formulas over the broad range of plant designs, operational factors, and meteorological conditions encompassed in this study should either confirm the efficacy of the formula as initially presented or result in some improvement for application to large power plants.

When programmed for optimization the original Csanady formula

$$\Delta h = 250 F/\bar{u}^3 \tag{6}$$

became

$$\Delta h = 133 \,\mathrm{m}^{0.73} (F/\bar{u}^3)^{0.72} \tag{7}$$

for the full range of stability conditions.

Data falling into each of the three stability classes were then reprogrammed by means of the following formula:

$$\Delta h = C_1 (F/\bar{u}^3)^{0.27},\tag{8}$$

from which the following values of C_1 were determined:

Stability class 1 (0.013 K m⁻¹, average potential temperature gradient); $C_1 = 119$.

Stability class 2 (0.003 K m⁻¹, average potential temperature gradient); $C_1 = 131$.

Stability class 3 ($-0.0006 \,\mathrm{K}\,\mathrm{m}^{-1}$, average potential temperature gradient); $C_1 = 137$.

A linear variation of C_1 with temperature gradient permits interpolation of C_1 values for intermediate gradient values.

By using the final formula with the appropriate C_1 values, the values of Δh were calculated and are plotted against observations in figure 9. The optimized formula reduced the scatter considerably from that shown in figure 6 based on the original formula.

239

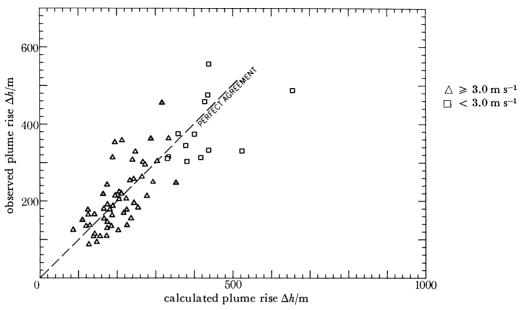


FIGURE 9. Relation between observed plume rise and that calculated by the optimized Csanady formula: $\Delta h = C_1(F/\bar{u}^3)^{0.27}$.

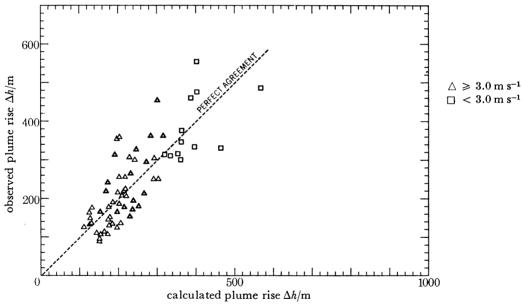


FIGURE 10. Relation between observed plume rise and that calculated by the optimized Concawe formula:

$$\Delta h = 0.414 \frac{Q_{_{\rm H}}^{0.444}}{\bar{u}^{0.694}} / \frac{\rm m^{1.694}}{\rm cal^{0.444} \, s^{0.250}}.$$

The original Concawe formula derived by multiple regression from observations of Raugh (1964) in Europe showed very good agreement with observations at T.V.A. steam plants, figure 10. When this formula $\Delta h = 0.175 [Q_{\rm H}^{\frac{1}{2}}/\bar{u}^{\frac{3}{4}}]$ (9)

was optimized for best conformity with T.V.A. data, it took the form

$$\Delta h = 0.414 \left[Q_{\rm H}^{0.444} / \bar{u}^{0.694} \right]. \tag{10}$$

This optimization resulted in slightly less scatter.

F. W. THOMAS, S. B. CARPENTER AND W. C. COLBAUGH

'Two-thirds power law' relation

Returning to the relation shown between the distance variables in figure 2, the 'two-thirds power law' plume rise formula can be derived as

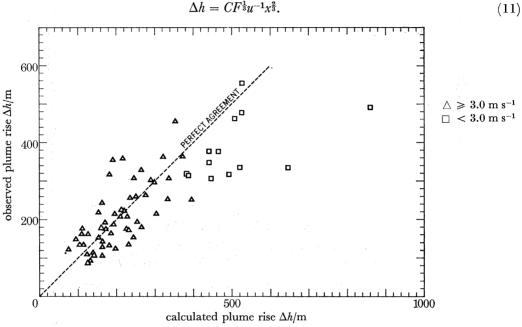


FIGURE 11. Relation between observed plume rise and that calculated by the ' $\frac{2}{3}$ power law' relation: $\Delta h = C(114 \text{ m}^{\frac{2}{3}}) F^{\frac{1}{3}}/\bar{u}$.

The observed Δh values at x = 1.219 km are then calculated (table 6 and figure 11), as

$$\Delta h = C(114 \,\mathrm{m}^{\frac{2}{3}}) \, F^{\frac{1}{3}} u^{-1},\tag{12}$$

where C is a dimensionless stability coefficient for which the following values are determined:

Stability class 1 (0.013 K m⁻¹, average potential temperature gradient); C = 1.07.

Stability class 2 (0.003 K m⁻¹, average potential temperature gradient); C = 1.04.

Stability class 3 ($-0.0006 \,\mathrm{K}\,\mathrm{m}^{-1}$, average potential temperature gradient); C = 0.98.

These values of C plotted against the potential temperature gradient, figure 12, show a straight line relation, i.e. the coefficient C becomes larger as the potential temperature decreases.

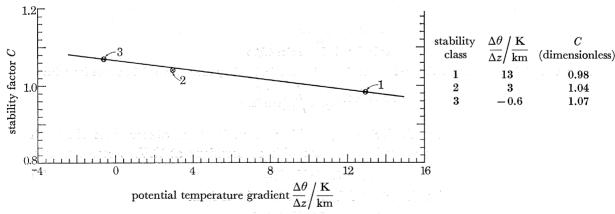


FIGURE 12. Stability classification. $\Delta h = C(F^{\frac{1}{3}}/\bar{u}) x^{\frac{2}{3}}$. When x = 1219 m, $x^{\frac{2}{3}} = 114$ m^{$\frac{2}{3}$} and $\Delta h = C(114$ m^{$\frac{2}{3}$}) $F^{\frac{1}{3}}/\bar{u}$. C = 1.065 - (6.25 m/K) $\Delta \theta/\Delta z$.

The groundline concentration reaches a maximum value at a critical wind speed (Brummage et al. 1966) given as $u_{\rm e} = [(2a-1)A/h_{\rm s}]^{1/a}$ (13)

where a = exponent of wind velocity, $h_s =$ actual stack height, A = function of kinetic and thermal energy of the plume. Applying this critical wind velocity concept, the effective stack height, $H_{\rm e}$, at the critical wind speed, $u_{\rm c}$, is calculated as

$$H_{\rm e} = \frac{2a}{2a - 1} h_{\rm s},\tag{14}$$

241

when the value of a is 1:

$$H_{\rm e} = 2h_{\rm s}. \tag{15}$$

Conclusions

Plume rise data plotted against calculated values of all formulas used in this report indicated that the wind speed and heat emission rate are the principal determinants in calculating plume rise. The effect of the stack height on plume rise is inherent in the stability factor for this analysis. When plume observations were plotted against calculated values according to the formulas originally presented by the author, the simple Concawe formula provided the best fit. Of the two formulas optimized to give best fit with T.V.A. observations, both the Concawe and Csanady formulas were good.

The Concawe formula is considered preferable for general investigation because of simplicity and ease of calculation. But when a particular event, such as inversion breakup or limited mixing layer fumigation, is being analysed, use of the 'two-thirds power law' is considered preferable, provided information for the meteorological parameters is available. This relation embodies the principal physical quantities normally associated with plume rise and permits some accounting for up to 15 % difference in plume rise attributable to variation in atmospheric stability.

The study served to validate plume rise formulas which can be used effectively over a range of meteorological and operational conditions. Plotting of the observed and calculated values shows some scatter even for the two best formulas. However, the scatter is limited and is equally distributed about a line of best fit. We doubt that the scatter can be reduced unless wind speed profiles are taken at less than 30 min intervals and related to shorter observation periods, say 5 to 10 min. However, it is unlikely that even a reduction in scatter would result in any substantive change in the formulas that have been developed. The common agreement of the original Concawe formula derived by regression analysis from several hundred observations in western Europe with the T.V.A. observations is judged to lend strength to this simple formula.

Nomenclature

- exponent for mean horizontal wind speed (dimensionless) a
- Asome function of kinetic and thermal energy $(m^{1+a} s^{-1})$
- b buoyant acceleration at top of stack = $g(\rho_a - \rho)/\rho$ (m s⁻²)
- Cstability coefficient (dimensionless)
- C_1 stability coefficient (m^{0.73})
- dstack exit diameter (m)
- Ddifference between ambient temperature and stack gas temperature at stack top (K)

242 F. W. THOMAS, S. B. CARPENTER AND W. C. COLBAUGH

- Napierian base = 2.71828 (dimensionless) e
- Fflux due to buoyancy and momentum = $gV_sr^2\Delta T/T$ or V_sr^2b (m⁴s⁻³)
- acceleration due to gravity (m s⁻²) g
- Gchange of potential temperature with height from stack top to plume top (K m⁻¹)
- stability parameter = $\frac{108 \Delta \theta / \Delta z}{\bar{\pi}^2}$ (dimensionless) G_N
- h_{s} height of stack (m)
- rise of the plume above the stack top (m) Δh
- $H_{\rm e}$ effective stack height (m)

$$J = \frac{\overline{u}^2}{(QV_{\rm S})^{\frac{1}{2}}} \left[0.43 \left(\frac{T_1}{gG} \right)^{\frac{1}{2}} - 0.28 \frac{V_{\rm S} T_1}{gD} \right] + 1 \; ({\rm dimensionless}) \label{eq:Jacobs}$$

- $= F/\bar{u}^3 \, (\mathrm{m})$
- Qstack gas emission rate converted to temperature T_1 (m³ s⁻¹)
- heat emission (cal s⁻¹) Q_{H}
- Q_{N} heat emission (MW)
- stack exit radius (m)
- Tambient air temperature (K)
- T_a ambient air temperature (K)
- $T_{
 m s}$ absolute temperature of stack gas (K)
- temperature at which density of flue gases is equal to that of the atmosphere (K)
- ΔT temperature difference between exit stack gas and ambient air (K)
- \overline{u}_{4} mean horizontal wind speed at stack top (m s⁻¹)
- mean horizontal wind speed at plume bottom (m s⁻¹) \bar{u}_3
- \bar{u}_2 mean horizontal wind speed at plume top (m s⁻¹)
- mean horizontal wind speed at plume centreline (m s⁻¹) \bar{u}_1
- mean horizontal wind speed between stack top and plume top (m s⁻¹) \bar{u}
- critical wind speed (m s⁻¹) $u_{\mathbf{c}}$
- $V_{
 m s}$ stack gas exit velocity (m s⁻¹)
- distance downwind from stack (m) х
- distance downwind from stack where the plume levels off (m) x_1
- predicted rise of the plume above the stack top for a given x (m) z
- α stack height factor (m² s⁻¹ MW^{-‡})
- $\Delta\theta/\Delta z$ change of potential temperature with height (K/100 m)
 - density of effluent (g cm⁻³) ρ
 - ρ_a density of atmospheric air (g cm⁻³)

REFERENCES (Thomas et al.)

- Bosanquet, C. H., Carey, W. F. & Halton, E. M. 1950 Dust deposition from chimney stacks. Proc. Inst. mech. Engrs 162, 355-365.
- Brummage, K. G. et al. 1966 The calculation of atmospheric dispersion from a stack. Stichting Concawe, The Hague, The Netherlands.
- Carpenter, S. B., Frizzola, J. A., Smith, M. E., Leavitt, J. M. & Thomas, F. W. 1968 Report on full-scale study of plume rise at large electric generating stations. J. Air Pollut. Control. Ass. 18 (7), 458-465.
- Csanady, G. T. 1961 Some observations on smoke plumes. Int. J. Air Wat. Pollut. 4, 47-51.
- Davidson-Bryant, W. F. 1949 The dispersion and spreading of gases and dust from chimneys. Trans. Conf. Industrial Wastes (14th Annual Meeting, Ind. Hyg. Found. Am.), pp. 38-55.

243

- Holland, J. Z. 1953 A meteorological survey of the Oak Ridge area. U.S.A.E.C. Report ORO-99, pp. 554-559 Tech. Inf. Ser. Oak Ridge, Tennessee, U.S.A.
- Leavitt, J. M., Carpenter, S. B. & Thomas, F. W. 1965 An interim report on full-scale study of plume rise at large electric generating stations. Paper presented at the Annual Meeting of the Air Pollut. Control. Ass. Toronto, Canada.
- Lucas, D. H., Moore, D. J. & Spurr, G. 1963 The rise of hot plumes from chimneys. Int. J. Air Wat. Pollut. 7, 473-500.
- Pasquill, F. 1962 Atmospheric diffusion, 209 pp. London: Van Nostrand.
- Rauch, H. 1964 Zur schornsteinuberhohung. Beitr. Phys. Atmos. 37 (2), 132-158.
- Sutton, O. G. 1953 Micrometeorology. New York: McGraw-Hill.

IGURE 1. Data from typical day of field operation at the Paradise steam plant on 1 April 1965. (a) Plume photograph at 07.15 h; (b) wind speed and direction profile at 07.16 h, and temperature profile at 07.20 h; (c) plume profile derived from photographs: the stack height is 183 m.

wind speed/m s⁻¹